4th ICRMCE 2018

Application of NDT Apparatus for Possible Use as Structural Health Monitoring of Concrete Building in the Field

Akmaluddin Ni Nyoman Kencanawati Ahmad Gazi Paedullah

Postgraduate Study Program of Civil Engineering Faculty of Engineering University of Mataram Jl. Majapahit 62 Mataram 83125, Indonesia

INTRODUCTION

- METHODOLOGY
- RESULTS AND DISCUSSION
- CONCLUSION

OUTLINE

Introduction

- Errors in the process of construction work due to low-quality control
- Extreme load on the building caused by natural disasters such as earthquakes; and
- Insufficient data for evaluating purposes if the building function is to be improved.

Doubts arise about the ability of building's serviceability

a non-destructive test (NDT) on the existing building structure is required

Background

This study is aimed to develop models for interpreting the residual strength of concrete structures in the field when the material quality and structural condition of the structure are questionable

Objective

METHODOLOGY

1. Pundit plus

2. Schmidt Hummer

Apparatus used

3. Flexural test equipment

4. Compression test equipment

Apparatus used

	Aggregates		
Description	Sand	Course aggregate	
Unit weight (gr/cm ³)	1341	1451	
Bulk density (gr/cm ³)	1.520	1.646	
Fineness modulus	3.203	6.67	
Mud content (%)	3.06	-	
Specific gravity (SSD)	2.65	2.56	

Material properties

Description	Compressive strength (MPa)			
Description	25	35	45	
Water to cement ratio	0.56	0.48	0.43	
Cement (kg/m ³)	360	427	466	
Water (kg/m ³)	205	205	205	
Sand (kg/m ³)	740	713	693	
Gravel (kg/m ³)	1110	1070	1040	

Concrete mix proportions

Group	Designation ^{*)}	Specimen number	Objective	
	C-25	3		
	C-35	3	A preliminary test to develop the	
- 1	C-45	3	relationship between cylinder and	
	Cu-25	3	cube specimen in terms of its	
	Cu-35	3	mechanical properties	
	Cu-45	3		
	Total 1	18 = (9 C and	id 9 Cu)	
	Cu-25	3		
2	Cu-35	3	Test UPV, Hammer, and DT	
	Cu-45	3		
	Total 2	9		
	B-25	3	Pool structure component	
3	B-35	3	representation	
	B-45	3		
	Total 3	9		

Test specimens and schedule

Details of specimens and testing

Testing activities

Testing activities (Structure representation)

RESULTS AND DISCUSSION

Compressive strength and elastic modulus

UPV and Rebound number

Percentage load acting against *v*: different scanning method (left); direct method showing residual strength (right)

P-v and RS-v relationsip

Direct method

Indirect method

Residual strength and concrete classification

	Pulse velocity		Pulse velocity (km/s)				Residual strength,
Concrete (km/s) ^{*)}		Direct method		Indirect method			
4	V	range	V	range	V	range	<i>RS</i> (%)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
excellent	> 4.5	2	> 4.4	7	> 4.2	2	> 80
good	3.5 – 4.5	1.0	3.7 - 4.4	0.7	3.6 - 4.1	0.5	60 - 80
doubtful	3.0 - 3.5	0.5	3.3 - 3.7	0.4	3.2 - 3.6	0.4	40 - 60
poor	2.0 - 3.0	1.0	2.9-3.3	0.4	2.8 - 3.2	0.4	20 - 40
very poor	< 2.0	2	< 2.9	2	< 2.8	~	< 20

^{*)} Reference [10]

Developing model: Concrete quality on the bases of pulse velocity

 $RS = 47.82 v_{\rm d} - 1.1 f_{\rm c} - 79.699$

RS=50.75 *v*_i-0.899*f_c*-86.975

Developing model in 3D plot

Interpretation of beam condition (model validation)

Longitudinal	Pulse velo	city (km/s)	ty (km/s)	
pulse velocity (km/s) ^{*)}	Compressio n test	Flexural test quality/ structure (%)		Residual strength, <i>RS</i> (%)
v	V	V	condition	
(1)	(2)	(3)	(4)	(5)
> 4.5	> 4.4	> 4.2	excellent	> 80
3.5 - 4.5	3.7 – 4.4	3.5 – 4.1	good	60 - 80

*) Reference [10]

Comparison of structure condition on the bases of pulse velocity with a different approach

- The value of v is directly proportional to the load and inversely proportional to the residual strength.
- Concrete structures with a residual strength of more than 60% are considered healthy or in a structurally "good" condition.
- Also, the concrete structure is healthy when the v measured gives a value of 3.5 and above. This value is acceptable and lies within the v range of 3.5 – 4.5 given in the reference

CONCLUSIONS

